Applications and Trends in Data Mining

- Data mining applications
- Data mining system products and research prototypes
- Additional themes on data mining
- Social impacts of data mining
- Trends in data mining
- Summary
Data Mining Applications

- Data mining is a young discipline with wide and diverse applications
 - There is still a nontrivial gap between general principles of data mining and domain-specific, effective data mining tools for particular applications
- Some application domains (covered in this chapter)
 - Biomedical and DNA data analysis
 - Financial data analysis
 - Retail industry
 - Telecommunication industry
Biomedical and DNA Data Analysis

- DNA sequences: 4 basic building blocks (nucleotides): adenine (A), cytosine (C), guanine (G), and thymine (T).
- Gene: a sequence of hundreds of individual nucleotides arranged in a particular order.
- Humans have around 30,000 genes.
- Tremendous number of ways that the nucleotides can be ordered and sequenced to form distinct genes.
- Semantic integration of heterogeneous, distributed genome databases.
 - Current: highly distributed, uncontrolled generation and use of a wide variety of DNA data.
 - Data cleaning and data integration methods developed in data mining will help.
DNA Analysis: Examples

- Similarity search and comparison among DNA sequences
 - Compare the frequently occurring patterns of each class (e.g., diseased and healthy)
 - Identify gene sequence patterns that play roles in various diseases
- Association analysis: identification of co-occurring gene sequences
 - Most diseases are not triggered by a single gene but by a combination of genes acting together
 - Association analysis may help determine the kinds of genes that are likely to co-occur together in target samples
- Path analysis: linking genes to different disease development stages
 - Different genes may become active at different stages of the disease
 - Develop pharmaceutical interventions that target the different stages separately
- Visualization tools and genetic data analysis
Data Mining for Financial Data Analysis

- Financial data collected in banks and financial institutions are often relatively complete, reliable, and of high quality.
- Design and construction of data warehouses for multidimensional data analysis and data mining:
 - View the debt and revenue changes by month, by region, by sector, and by other factors.
 - Access statistical information such as max, min, total, average, trend, etc.
- Loan payment prediction/consumer credit policy analysis:
 - Feature selection and attribute relevance ranking.
 - Loan payment performance.
 - Consumer credit rating.
Financial Data Mining

- Classification and clustering of customers for targeted marketing
 - multidimensional segmentation by nearest-neighbor, classification, decision trees, etc. to identify customer groups or associate a new customer to an appropriate customer group
- Detection of money laundering and other financial crimes
 - integration of from multiple DBs (e.g., bank transactions, federal/state crime history DBs)
 - Tools: data visualization, linkage analysis, classification, clustering tools, outlier analysis, and sequential pattern analysis tools (find unusual access sequences)
Data Mining for Retail Industry

- Retail industry: huge amounts of data on sales, customer shopping history, etc.
- Applications of retail data mining
 - Identify customer buying behaviors
 - Discover customer shopping patterns and trends
 - Improve the quality of customer service
 - Achieve better customer retention and satisfaction
 - Enhance goods consumption ratios
 - Design more effective goods transportation and distribution policies
Data Mining in Retail Industry: Examples

- Design and construction of data warehouses based on the benefits of data mining
 - Multidimensional analysis of sales, customers, products, time, and region
- Analysis of the effectiveness of sales campaigns
- Customer retention: Analysis of customer loyalty
 - Use customer loyalty card information to register sequences of purchases of particular customers
 - Use sequential pattern mining to investigate changes in customer consumption or loyalty
 - Suggest adjustments on the pricing and variety of goods
- Purchase recommendation and cross-reference of items
Data Mining for Telecomm. Industry (1)

- A rapidly expanding and highly competitive industry and a great demand for data mining
 - Understand the business involved
 - Identify telecommunication patterns
 - Catch fraudulent activities
 - Make better use of resources
 - Improve the quality of service
- Multidimensional analysis of telecommunication data
 - Intrinsically multidimensional: calling-time, duration, location of caller, location of callee, type of call, etc.
Data Mining for Telecomm. Industry (2)

- Fraudulent pattern analysis and the identification of unusual patterns
 - Identify potentially fraudulent users and their atypical usage patterns
 - Detect attempts to gain fraudulent entry to customer accounts
 - Discover unusual patterns which may need special attention
- Multidimensional association and sequential pattern analysis
 - Find usage patterns for a set of communication services by customer group, by month, etc.
 - Promote the sales of specific services
 - Improve the availability of particular services in a region
- Use of visualization tools in telecommunication data analysis
How to Choose a Data Mining System?

- Commercial data mining systems have little in common
 - Different data mining functionality or methodology
 - May even work with completely different kinds of data sets
- Need multiple dimensional view in selection
- Data types: relational, transactional, text, time sequence, spatial?
- System issues
 - running on only one or on several operating systems?
 - a client/server architecture?
 - Provide Web-based interfaces and allow XML data as input and/or output?
How to Choose a Data Mining System? (2)

- **Data sources**
 - ASCII text files, multiple relational data sources
 - support ODBC connections (OLE DB, JDBC)?

- **Data mining functions and methodologies**
 - One vs. multiple data mining functions
 - One vs. variety of methods per function
 - More data mining functions and methods per function provide the user with greater flexibility and analysis power

- **Coupling with DB and/or data warehouse systems**
 - Four forms of coupling: no coupling, loose coupling, semitight coupling, and tight coupling
 - Ideally, a data mining system should be tightly coupled with a database system
How to Choose a Data Mining System? (3)

- Scalability
 - Row (or database size) scalability
 - Column (or dimension) scalability
 - Curse of dimensionality: it is much more challenging to make a system column scalable that row scalable

- Visualization tools
 - “A picture is worth a thousand words”
 - Visualization categories: data visualization, mining result visualization, mining process visualization, and visual data mining

- Data mining query language and graphical user interface
 - Easy-to-use and high-quality graphical user interface
 - Essential for user-guided, highly interactive data mining
Examples of Data Mining Systems (1)

- **IBM Intelligent Miner**
 - A wide range of data mining algorithms
 - Scalable mining algorithms
 - Toolkits: neural network algorithms, statistical methods, data preparation, and data visualization tools
 - Tight integration with IBM's DB2 relational database system

- **SAS Enterprise Miner**
 - A variety of statistical analysis tools
 - Data warehouse tools and multiple data mining algorithms

- **Microsoft SQL Server 2000**
 - Integrate DB and OLAP with mining
 - Support OLEDB for DM standard
Examples of Data Mining Systems (2)

- **SGI MineSet**
 - Multiple data mining algorithms and advanced statistics
 - Advanced visualization tools
- **Clementine (SPSS)**
 - An integrated data mining development environment for end-users and developers
 - Multiple data mining algorithms and visualization tools
- **DBMiner (DBMiner Technology Inc.)**
 - Multiple data mining modules: discovery-driven OLAP analysis, association, classification, and clustering
 - Efficient, association and sequential-pattern mining functions, and visual classification tool
 - Mining both relational databases and data warehouses
Visual Data Mining

- **Visualization**: use of computer graphics to create visual images which aid in the understanding of complex, often massive representations of data.

- **Visual Data Mining**: the process of discovering implicit but useful knowledge from large data sets using visualization techniques.
Visualization

- **Purpose of Visualization**
 - *Gain insight* into an information space by mapping data onto graphical primitives
 - *Provide qualitative overview* of large data sets
 - *Search* for patterns, trends, structure, irregularities, relationships among data.
 - *Help find interesting regions and suitable parameters* for further quantitative analysis.
 - *Provide a visual proof* of computer representations derived
Visual Data Mining & Data Visualization

- Integration of visualization and data mining
 - data visualization
 - data mining result visualization
 - data mining process visualization
 - interactive visual data mining
- Data visualization
 - Data in a database or data warehouse can be viewed
 - at different levels of abstraction
 - as different combinations of attributes or dimensions
 - Data can be presented in various visual forms
Data Mining Result Visualization

- Presentation of the **results or knowledge** obtained from data mining in visual forms
- Examples
 - Scatter plots and boxplots (obtained from descriptive data mining)
 - Decision trees
 - Association rules
 - Clusters
 - Outliers
 - Generalized rules
Boxplots from Statsoft: Multiple Variable Combinations
Visualization of Data Mining Results in SAS Enterprise Miner: Scatter Plots
Visualization of Association Rules in SGI/MineSet 3.0
Visualization of a Decision Tree in SGI/MineSet 3.0
Visualization of Cluster Grouping in IBM Intelligent Miner
Data Mining Process Visualization

- Presentation of the **various processes of data mining** in visual forms so that users can see
 - Data extraction process
 - Where the data is extracted
 - How the data is cleaned, integrated, preprocessed, and mined
 - Method selected for data mining
 - Where the results are stored
 - How they may be viewed
Visualization of Data Mining Processes by Clementine

- Access Data
- Prepare Data
- Visualize
- Evaluate
- Model
- Deploy

See your solution discovery process clearly.

Understand variations with visualized data.
Interactive Visual Data Mining

- Using visualization tools in the data mining process to help users make smart data mining decisions

- Example
 - Display the data distribution in a set of attributes using colored sectors or columns (depending on whether the whole space is represented by either a circle or a set of columns)
 - Use the display to which sector should first be selected for classification and where a good split point for this sector may be
Interactive Visual Mining by Perception-Based Classification (PBC)
Audio Data Mining

- Uses audio signals to indicate the patterns of data or the features of data mining results
- An interesting alternative to visual mining
- An inverse task of mining audio (such as music) databases which is to find patterns from audio data
- Visual data mining may disclose interesting patterns using graphical displays, but requires users to concentrate on watching patterns
- Instead, transform patterns into sound and music and listen to *pitches, rhythms, tune, and melody* in order to identify anything interesting or unusual
Scientific and Statistical Data Mining (1)

- There are many well-established statistical techniques for data analysis, particularly for numeric data
 - applied extensively to data from scientific experiments and data from economics and the social sciences

- **Regression**
 - predict the value of a response (dependent) variable from one or more predictor (independent) variables where the variables are numeric
 - forms of regression: linear, multiple, weighted, polynomial, nonparametric, and robust
Scientific and Statistical Data Mining (2)

- **Generalized linear models**
 - allow a categorical response variable (or some transformation of it) to be related to a set of predictor variables
 - similar to the modeling of a numeric response variable using linear regression
 - include logistic regression and Poisson regression

- **Mixed-effect models**
 - For analyzing **grouped data**, i.e. data that can be classified according to one or more grouping variables
 - Typically describe relationships between a response variable and some covariates in data grouped according to one or more factors
Regression trees
- Binary trees used for classification and prediction
- Similar to decision trees: Tests are performed at the internal nodes
- In a regression tree the mean of the objective attribute is computed and used as the predicted value

Analysis of variance
- Analyze experimental data for two or more populations described by a numeric response variable and one or more categorical variables (factors)
- **Factor analysis**
 - determine which variables are combined to generate a given factor
 - e.g., for many psychiatric data, one can indirectly measure other quantities (such as test scores) that reflect the factor of interest

- **Discriminant analysis**
 - predict a categorical response variable, commonly used in social science
 - Attempts to determine several discriminant functions (linear combinations of the independent variables) that discriminate among the groups defined by the response variable
Scientific and Statistical Data Mining (5)

- **Time series**: many methods such as autoregression, ARIMA (Autoregressive integrated moving-average modeling), long memory time-series modeling
- **Quality control**: displays group summary charts
- **Survival analysis**
 - predicts the probability that a patient undergoing a medical treatment would survive at least to time t (life span prediction)
Theoretical Foundations of Data Mining (1)

- Data reduction
 - The basis of data mining is to reduce the data representation
 - Trades accuracy for speed in response
- Data compression
 - The basis of data mining is to compress the given data by encoding in terms of bits, association rules, decision trees, clusters, etc.
- Pattern discovery
 - The basis of data mining is to discover patterns occurring in the database, such as associations, classification models, sequential patterns, etc.
Theoretical Foundations of Data Mining (2)

- **Probability theory**
 - The basis of data mining is to discover joint probability distributions of random variables

- **Microeconomic view**
 - A view of utility: the task of data mining is finding patterns that are interesting only to the extent in that they can be used in the decision-making process of some enterprise

- **Inductive databases**
 - Data mining is the problem of performing inductive logic on databases,
 - The task is to query the data and the theory (i.e., patterns) of the database
 - Popular among many researchers in database systems
Data Mining and Intelligent Query Answering

- A general framework for the integration of data mining and intelligent query answering
 - **Data query**: finds concrete data stored in a database; returns exactly what is being asked
 - **Knowledge query**: finds rules, patterns, and other kinds of knowledge in a database
 - Intelligent (or cooperative) query answering: analyzes the intent of the query and provides generalized, neighborhood or associated information relevant to the query
Is Data Mining a Hype or Will It Be Persistent?

- Data mining is a technology
- Technological life cycle
 - Innovators
 - Early adopters
 - Chasm
 - Early majority
 - Late majority
 - Laggards
Data mining is at Chasm!?
- Existing data mining systems are too generic
- Need business-specific data mining solutions and smooth integration of business logic with data mining functions
Data Mining: Merely Managers' Business or Everyone's?

- Data mining will surely be an important tool for managers' decision making
 - Bill Gates: “Business @ the speed of thought”
- The amount of the available data is increasing, and data mining systems will be more affordable
- Multiple personal uses
 - Mine your family's medical history to identify genetically-related medical conditions
 - Mine the records of the companies you deal with
 - Mine data on stocks and company performance, etc.
- Invisible data mining
 - Build data mining functions into many intelligent tools
Social Impacts: Threat to Privacy and Data Security?

- Is data mining a threat to privacy and data security?
 - “Big Brother”, “Big Banker”, and “Big Business” are carefully watching you
- Profiling information is collected every time
 - credit card, debit card, supermarket loyalty card, or frequent flyer card, or apply for any of the above
 - You surf the Web, rent a video, fill out a contest entry form,
 - You pay for prescription drugs, or present you medical care number when visiting the doctor
- Collection of personal data may be beneficial for companies and consumers, there is also potential for misuse
 - Medical Records, Employee Evaluations, Etc.
Protect Privacy and Data Security

- Fair information practices
 - International guidelines for data privacy protection
 - Cover aspects relating to data collection, purpose, use, quality, openness, individual participation, and accountability
 - Purpose specification and use limitation
 - Openness: Individuals have the right to know what information is collected about them, who has access to the data, and how the data are being used
- Develop and use data security-enhancing techniques
 - Blind signatures
 - Biometric encryption
 - Anonymous databases
Trends in Data Mining (1)

- Application exploration
 - development of application-specific data mining system
 - Invisible data mining (mining as built-in function)
- Scalable data mining methods
 - Constraint-based mining: use of constraints to guide data mining systems in their search for interesting patterns
- Integration of data mining with database systems, data warehouse systems, and Web database systems
- Invisible data mining
Trends in Data Mining (2)

- **Standardization of data mining language**
 - A standard will facilitate systematic development, improve interoperability, and promote the education and use of data mining systems in industry and society

- **Visual data mining**

- **New methods for mining complex types of data**
 - More research is required towards the integration of data mining methods with existing data analysis techniques for the complex types of data

- **Web mining**

- **Privacy protection and information security in data mining**